4.7 Article

Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation

期刊

CARBOHYDRATE POLYMERS
卷 233, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.115873

关键词

Poly(caprolactone); Alginate nanofibers; Cellulose nanocrystal; Tissue engineering; Wound healing scaffold

向作者/读者索取更多资源

In this research, cellulose nanocrystal (CNC) was synthesized from cotton waste using controlled hydrolysis against 64 % (w/w) sulfuric acid solution. The produced nanoparticles were then characterized using FTIR, XRD, TGA, and DLS analyses. Biaxial electrospinning technique was used to produce CNC incorporated PCL-PVA/NaAlg nanofibers. The sodium alginate portion was then crosslinked via submerging the samples in calcium chloride aqueous solution. The CNC incorporated and crosslinked sample was characterized using SEM, FTIR, and TGA techniques. Results confirmed the presence of CNC nanoparticles and alginate crosslinking reaction. Mechanical studies showed that CNC incorporation increases the tensile modulus by 65 %. Also, the crosslinked samples exhibited an increase in elongation at break. Water contact angle studies suggested that CNC incorporation and crosslinking improves nanofiber hydrophilicity. Cell viability of more than 90 % was observed in CNC incorporated PCL-CaAlg nanofibers. Also, SEM images of cells on nanofiber scaffolds showed better cell growth and attachment in PCL-CaAlg-CNC samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据