4.7 Article

The loss of photosynthesis pathway and genomic locations of the lost plastid genes in a holoparasitic plant Aeginetia indica

期刊

BMC PLANT BIOLOGY
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-020-02415-2

关键词

Aeginetia indica; Plastid genome; Transcriptome

资金

  1. National Natural Science Foundation of China [31811530297]
  2. Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences [AB2018014]
  3. Science and Technology Program of Guangzhou [201707020035]
  4. Chang Hungta Science Foundation of Sun Yat-sen University

向作者/读者索取更多资源

Background With three origins of holoparasitism, Orobanchaceae provides an ideal system to study the evolution of holoparasitic lifestyle in plants. The evolution of holoparasitism can be revealed by plastid genome degradation and coordinated changes in the nuclear genome, since holoparasitic plants lost the capability of photosynthesis. Among the three clades with holoparasitic plants in Orobanchaceae, only Clade VI has no available plastid genome sequences for holoparasitic plants. In this study, we sequenced the plastome and transcriptome of Aeginetia indica, a holoparasitic plant in Clade VI of Orobanchaceae, to study its plastome evolution and the corresponding changes in the nuclear genome as a response of the loss of photosynthetic function. Results The plastome of A. indica is reduced to 86,212 bp in size, and almost all photosynthesis-related genes were lost. Massive fragments of the lost plastid genes were transferred into the mitochondrial and/or nuclear genomes. These fragments could not be detected in its transcriptomes, suggesting that they were non-functional. Most protein coding genes in the plastome showed the signal of relaxation of purifying selection. Plastome and transcriptome analyses indicated that the photosynthesis pathway is completely lost, and that the porphyrin and chlorophyll metabolism pathway is partially retained, although chlorophyll synthesis is not possible. Conclusions Our study suggests the loss of photosynthesis-related functions in A. indica in both the nuclear and plastid genomes. The lost plastid genes are transferred into its nuclear and/or mitochondrial genomes, and exist in very small fragments with no expression and are thus non-functional. The Aeginetia indica plastome also provides a resource for comparative studies on the repeated evolution of holoparasitism in Orobanchaceae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据