4.7 Article

Genome-wide analysis of the citrus B3 superfamily and their association with somatic embryogenesis

期刊

BMC GENOMICS
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-020-6715-9

关键词

Citrus; B3 superfamily; Phylogenetic analysis; Somatic embryogenesis; Callus initiation; Expression profile

资金

  1. Ministry of Science and Technology of China [2018YFD1000106]
  2. National Natural Science Foundation of China [31701906, 31872051, 31872084]
  3. Fundamental Research Funds for Central Universities [2662018PY007, 2662018PY013]

向作者/读者索取更多资源

BackgroundIn citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE.ResultsGenome-wide sequence analysis identified 72 (CsB3) and 69 (CgB3) putative B3 superfamily members in the genomes of sweet orange (Citrus sinensis, polyembryonic) and pummelo (C. grandis, monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis. Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight B3 genes, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation.ConclusionsThis study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据