4.8 Article

Sustainable feedstock for bioethanol production: Impact of spatial resolution on the design of a sustainable biomass supply-chain

期刊

BIORESOURCE TECHNOLOGY
卷 302, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.122896

关键词

Optimization; Biofuel; Life cycle assessment; Spatial analysis; Environmental impacts

资金

  1. DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]

向作者/读者索取更多资源

This study assesses the role of spatial-resolution and spatial-variations in environmental impacts estimation and decision-making for corn-stover harvesting to produce biofuels. Geospatial corn-stover yields and environmental impacts [global warming potential (GWP), eutrophication, and soil-loss] dataset for two study areas in Wisconsin and Michigan were generated through Environmental Policy Integrated Climate (EPIC) model and aggregated at different spatial-resolutions (i.e., 100; 1000; 10,000 ha). For each spatial-resolution, decision-making was accomplished using an optimization routine to minimize different environmental impacts associated with harvesting stover to meet varied biomass demands. The results of the study showed that selective harvesting at higher-resolution (or lower-aggregation level) can result in significantly lower environmental impacts, especially at low stover demand levels. Additionally, the increased spatial resolution had more impact in minimizing the environmental impacts of corn stover harvest under a more variable landscape such as terrains and its influences are more pronounced for soil-loss and eutrophication potential compared to GWP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据