4.5 Article

Protein Structure Prediction and Design in a Biologically Realistic Implicit Membrane

期刊

BIOPHYSICAL JOURNAL
卷 118, 期 8, 页码 2042-2055

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2020.03.006

关键词

-

资金

  1. Hertz Foundation Fellowship
  2. National Science Foundation Graduate Research Fellowship
  3. National Institute of Health [GM-078221, GM-079440]
  4. National Science Foundation Extreme Science and Engineering Discovery Environment [TG-MCB180056]

向作者/读者索取更多资源

Protein design is a powerful tool for elucidating mechanisms of function and engineering new therapeutics and nanotechnologies. Although soluble protein design has advanced, membrane protein design remains challenging because of difficulties in modeling the lipid bilayer. In this work, we developed an implicit approach that captures the anisotropic structure, shape of water-filled pores, and nanoscale dimensions of membranes with different lipid compositions. The model improves performance in computational benchmarks against experimental targets, including prediction of protein orientations in the bilayer, DDG calculations, native structure discrimination, and native sequence recovery. When applied to de novo protein design, this approach designs sequences with an amino acid distribution near the native amino acid distribution in membrane proteins, overcoming a critical flaw in previous membrane models that were prone to generating leucine-rich designs. Furthermore, the proteins designed in the new membrane model exhibit native-like features including interfacial aromatic side chains, hydrophobic lengths compatible with bilayer thickness, and polar pores. Our method advances high-resolution membrane protein structure prediction and design toward tackling key biological questions and engineering challenges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据