4.7 Article

Suppression of Fpr2 expression protects against endotoxin-induced acute lung injury by interacting with Nrf2-regulated TAK1 activation

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 125, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2020.109943

关键词

Acute lung injury (ALI); Fpr2; Inflammation and oxidative stress; Nrf2; TAK1

向作者/读者索取更多资源

Acute lung injury (ALI) is caused by severe infection, and urgently needs effective treatments or validated pharmacological targets. Formyl peptide receptor 2 (Fpr2) plays essential roles in immune responses and inflammatory diseases. In the present study, Fpr2 expression was markedly increased in lung tissues of lipopolysaccharide (LPS)-challenged mice, and these effects were confirmed in LPS-stimulated macrophages. Then, the in vitro analysis suggested that Fpr2 knockdown significantly decreased LPS-induced inflammatory response in macrophages. Notably, the in vivo experiments indicated that Fpr2 deficiency alleviated ALI in LPS-treated mice, as evidenced by the improved histological changes in lung, reduced protein concentrations in bronchoalveolar lavage fluid (BALF) and decreased neutrophil infiltration. In addition, LPS-induced pulmonary inflammation was ameliorated by Fpr2 knockout, which was partly through blocking nuclear factor-kappa B (NF-kappa B) and mitogen-activated protein kinases (MAPKs) signaling pathways. Furthermore, oxidative stress stimulated by LPS was also attenuated by Fpr2 knockout, as indicated by the reduced malondialdehyde (MDA) levels and reactive oxygen species (ROS) production, accompanied with the elevated glutathione (GSH), superoxide dismutase (SOD), heme oxygenase-1 (HO-1) and NAD (P) H: quinone oxidoreductase (NQO1) levels. These antioxidative processes were mainly via the activation of Nrf2. Importantly, the in vitro results showed that Fpr2 over-expression markedly accelerated the inflammation and ROS production in LPS-incubated macrophages, which could be reversed by restoring the Nrf2 activation, demonstrating that Nrf2 was partially involved in Fpr2-regulated inflammatory response and oxidative stress during ALI progression. Then, we found that Fpr2 inhibition markedly reduced the activation of transforming growth factor beta-activated kinase 1 (TAK1) induced by LPS. What's more important, immunoprecipitation results demonstrated that Fpr2 directly interacted with the kinase TAK1. Taken together, findings in the present study illustrated that Fpr2 could directly interact with TAK1 to promote ALI through enhancing inflammation and oxidative stress associated with the activation of Nrf2, providing a novel therapeutic target to develop effective treatment against ALI progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据