4.7 Article

Activation of Astrocytes in the Dorsomedial Striatum Facilitates Transition From Habitual to Goal-Directed Reward-Seeking Behavior

期刊

BIOLOGICAL PSYCHIATRY
卷 88, 期 10, 页码 797-808

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.biopsych.2020.04.023

关键词

-

资金

  1. Samuel C. Johnson for Genomics of Addiction Program at the Mayo Clinic
  2. Ulm Foundation
  3. National Institute on Alcohol Abuse and Alcoholism [K01 AA027773, R01 AA018779]
  4. National Institute of Neurological Disorders and Stroke [R01 NS88260]
  5. National Institutes of Health [U24 DK100469]

向作者/读者索取更多资源

BACKGROUND: Habitual reward-seeking behavior is a hallmark of addictive behavior. The role of the dorsomedial striatum (DMS) in regulating goal-directed reward-seeking behavior has been long appreciated. However, it remains unclear how the astrocytic activities in the DMS differentially affect the behavioral shift. METHODS: To investigate the astrocytic activity-driven neuronal synaptic events and behavioral consequences, we chemogenetically activated astrocytes in the DMS using GFAP promoter-driven expression of hM3Dq, the excitatory DREADDs (designer receptors exclusively activated by designer drugs). First, we confirmed the chemogenetically induced cellular activity in the DMS astrocytes using calcium imaging. Then, we recorded electrophysiological changes in the synaptic activity of the two types of medium spiny neurons (MSNs): direct and indirect pathway MSNs. To evaluate the behavioral consequences, we trained mice in nose-poking operant chambers that developed either habitual or goal-directed reward-seeking behaviors. RESULTS: The activation of DMS astrocytes reduced the frequency of spontaneous excitatory postsynaptic currents in the direct pathway MSNs, whereas it increased the amplitude of the spontaneous excitatory postsynaptic currents and decreased the frequency of spontaneous inhibitory postsynaptic currents in the indirect pathway MSNs. Interestingly, astrocyte-induced DMS neuronal activities are regulated by adenosine metabolism, receptor signaling, and transport. Importantly, mice lacking an astrocytic adenosine transporter, ENT1 (equilibrative nucleoside transporter 1; Slc29a1), show no transition from habitual to goal-directed reward-seeking behaviors upon astrocyte activation, while restoring ENT1 expression in the DMS facilitated this transition. CONCLUSIONS: Our findings reveal that DMS astrocyte activation differentially regulates MSNs' activity and facilitates shifting from habitual to goal-directed reward-seeking behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据