4.7 Article

Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers

期刊

CATALYSIS TODAY
卷 262, 期 -, 页码 121-132

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2015.10.019

关键词

Electrolysis; Catalyst; Manufacturing; Hydrogen; Core-shell; Platinum

资金

  1. Office of Energy Efficiency and Renewable Energy [DE-SC0008251]
  2. Advanced Manufacturing Office of the Department of Energy [DE-SC0009213]
  3. U.S. Department of Energy (DOE) [DE-SC0009213] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Hydrogen is one of the world's most important chemicals, with global production of about 50 billion kg/year. Currently, hydrogen is mainly produced from fossil fuels such as natural gas and coal, producing CO2. Water electrolysis is a promising technology for fossil-free, CO2-free hydrogen production. Proton exchange membrane (PEM)-based water electrolysis also eliminates the need for caustic electrolyte, and has been proven at megawatt scale. However, a major cost driver is the electrode, specifically the cost of electrocatalysts used to improve the reaction efficiency, which are applied at high loadings (>3 mg/cm(2) total platinum group metal (PGM) content). Core-shell catalysts have shown improved activity for hydrogen production, enabling reduced catalyst loadings, while reactive spray deposition techniques (RSDT) have been demonstrated to enable manufacture of catalyst layers more uniformly and with higher repeatability than existing techniques. Core-shell catalysts have also been fabricated with RSDT for fuel cell electrodes with good performance. Manufacturing and materials need to go hand in hand in order to successfully fabricate electrodes with ultra-low catalyst loadings (<0.5 mg/cm(2) total PGM content) without significant variation in performance. This paper describes the potential for these two technologies to work together to enable low cost PEM electrolysis systems. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据