4.3 Review

Lipid Nanoparticles for Cell-Specific in Vivo Targeted Delivery of Nucleic Acids

期刊

BIOLOGICAL & PHARMACEUTICAL BULLETIN
卷 43, 期 4, 页码 584-595

出版社

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/bpb.b19-00743

关键词

gene delivery; targeting; lipid nanoparticle; liver; spleen; endothelium

资金

  1. Special Education and Research Expenses from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan

向作者/读者索取更多资源

The last few years have witnessed a great advance in the development of nonviral systems for in vivo targeted delivery of nucleic acids. Lipid nanoparticles (LNPs) are the most promising carriers for producing clinically approved products in the future. Compared with other systems used for nonviral gene delivery, LNPs provide several advantages including higher stability, low toxicity, and greater efficiency. Additionally, systems based on LNPs can be modified with ligands and devices for controlled biodistribution and internalization into specific cells. Efforts are ongoing to improve the efficiency of lipid-based gene vectors. These efforts depend on the appropriate design of nanocarriers as well as the development of new lipids with improved gene delivery ability. Several ionizable lipids have recently been developed and have shown dramatically improved efficiency. However, enhancing the ability of nanocarriers to target specific cells in the body remains the most difficult challenge. Systemically administered LNPs can access organs in which the capillaries are characterized by the presence of fenestrations, such as the liver and spleen. The liver has received the most attention to date, although targeted delivery to the spleen has recently emerged as a promising tool for modulating the immune system. In this review, we discuss recent advances in the use of LNPs for cell specific targeted delivery of nucleic acids. We focus mainly on targeting liver hepatocytes and spleen immune cells as excellent targets for gene therapy. We also discuss the potential of endothelial cells as an alternate approach for targeting organs with a continuous endothelium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据