4.6 Article

H2S attenuates injury after ischemic stroke by diminishing the assembly of CaMKII with ASK1-MKK3-p38 signaling module

期刊

BEHAVIOURAL BRAIN RESEARCH
卷 384, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.bbr.2020.112520

关键词

H2S; ischemia/reperfusion; SAM; CaMKII; ASK1-MKK3-p38

资金

  1. National Natural Science Foundation of China [81671208]
  2. Natural Science Foundation of Jiangsu Province [BK20171180]
  3. Six Talent Peaks Project in Jiangsu Province [WSN-089]

向作者/读者索取更多资源

Cerebral ischemia/reperfusion (I/R) injury is a leading cause of learning and memory dysfunction. Hydrogen sulfide (H2S) has been shown to confer neuroprotection in various neurodegenerative diseases, including cerebral I/R-induced hippocampal CA1 injury. However, the underlying mechanisms have not been completely understood. In the present study, rats were pretreated with SAM/NaHS (SAM, an H2S agonist, and NaHS, an H2S donor) only or SAM/NaHS combined with CaM (an activator of CaMKII) prior to cerebral ischemia. The Morris water maze test demonstrated that SAM/NaHS could alleviate learning and memory impairment induced by cerebral I/R injury. Cresyl violet staining was used to show the survival of hippocampal CA1 pyramidal neurons. SAM/NaHS significantly increased the number of surviving cells, whereas CaM weakened the protection induced by SAM/NaHS. The immunohistochemistry results indicated that the number of Iba1-positive microglia significantly increased after cerebral I/R. Compared with the I/R group, the number of Iba1-positive microglia in the SAM/NaHS groups significantly decreased. Co-Immunoprecipitation and immunoblotting were conducted to demonstrate that SAM/NaHS suppressed the assembly of CaMKII with the ASK1-MKK3-p38 signal module after cerebral I/R, which decreased the phosphorylation of p38. In contrast, CaM significantly inhibited the effects of SAM/NaHS. Taken together, the results suggested that SAM/NaHS could suppress cerebral I/R injury by downregulating p38 phosphorylation via decreasing the assembly of CaMKII with the ASK1-MKK3-p38 signal module.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据