4.6 Article

Assessing the influence of biofilm surface roughness on mass transfer by combining optical coherence tomography and two-dimensional modeling

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 113, 期 5, 页码 989-1000

出版社

WILEY
DOI: 10.1002/bit.25868

关键词

biofilm imaging; optical coherence tomography; biofilm modeling; mass transfer; convection; diffusion

资金

  1. AnoxKaldnes
  2. Water Science Alliance of The Helmholtz Association

向作者/读者索取更多资源

Imaging and modeling are two major approaches in biofilm research to understand the physical and biochemical processes involved in biofilm development. However, they are often used separately. In this study we combined these two approaches to investigate substrate mass transfer and mass flux. Cross-sectional biofilm images were acquired by means of optical coherence tomography (OCT) for biofilms grown on carriers. A 2D biofilm model was developed incorporating OCT images as well as a simplified biofilm geometry serving as structural templates. The model incorporated fluid flow, substrate transfer and biochemical conversion of substrates and simulated the hydrodynamics surrounding the biofilm structure as well as the substrate distribution. The method allowed detailed analysis of the hydrodynamics and mass transfer characteristics at the micro-scale. Biofilm activity with respect to substrate fluxes was compared among different combinations of flow, substrate availability and biomass density. The combined approach revealed that higher substrate fluxes at heterogeneous biofilm surface under two conditions: pure diffusion and when high flow velocity along the biofilms surface renders the whole liquid-biofilm interface to be highly active. In-between the two conditions the substrate fluxes across the surface of smooth biofilm geometry were higher than that of the heterogeneous biofilms. Biotechnol. Bioeng. 2016;113: 989-1000. (c) 2015 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据