4.7 Article

Formation of Mo2C/hollow tubular g-C3N4 hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance

期刊

APPLIED SURFACE SCIENCE
卷 527, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.146757

关键词

g-C3N4; Photocatalytic; Z-scheme heterojunction; Degradation

资金

  1. Program for the National Natural Science Foundation of China [51809090, 51879101, 51779090, 51709101]
  2. National Program for Support of Top-Notch Young Professionals of China (2014)
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]
  4. Hunan Provincial Science and Technology Plan Project [2018SK20410, 2017SK2243, 2016RS3026]
  5. Natural Science Foundation of Hunan Province, China [2019JJ50077]
  6. Fundamental Research Funds for the Central Universities [531118010114, 531119200086, 531107050978]

向作者/读者索取更多资源

The pharmaceutical products have becoming ubiquitous in aquatic environment. Photocatalytic degradation is considered as a promising strategy to address this environmental threat. Here we showed new Mo2C/hollow tubular g-C3N4 hybrids (Mo2C/TCN) consisting of well-designed direct Z-scheme heterojunction with favorable charge transfer channels for efficient contaminants degradation. Compare to the traditional Mo2C/g-C3N4 type-I heterojunction reported in the previous literature, the powerful direct Z-scheme heterojunction retains the original redox ability of the component without changing its oxidation and reduction potential. By virtue of the hollow tubular architecture, more incident electrons are expected to be rapid trapped by Mo2C nanoparticles, which contributes to the effective separation of photoinduced hole-electron pairs. As a result, the optimized Z scheme system exhibits impressive visible-light photocatalytic performance. Especially, the 2 wt% Mo2C/TCN photocatalysts exhibits superior photocatalytic performance for tetracycline degradation with a reaction rate of 0.0391 min(-1), which is 3-times and 9-times higher than those of TCN and pristine g-C3N4, respectively. The outstanding performance strongly depends on the synergistic effects among the favorable electrical conductivity of Mo2C and the multitude of charge transfer channels provided by the Z-scheme heterojunction. This work provides a new idea of designing direct Z-scheme material and it sheds novel insight to establish photocatalytic model for environmental amendment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据