4.7 Article

Efficient waste polyvinyl(butyral) and cellulose composite enabled carbon nanofibers for oxygen reduction reaction and water remediation

期刊

APPLIED SURFACE SCIENCE
卷 510, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.145505

关键词

Waste polyvinyl(butyral); Cellulose; Electrospinning; Porous carbon nanofibers; Oxygen reduction reaction; Adsorbent

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT, South Korea [2016M3A7B4909318]
  2. Korea University Grant

向作者/读者索取更多资源

Waste polyvinyl(butyral) (W-PVB) collected from the windshields of end-of-life vehicles has drawn considerable interest as a complementary and abundant resource. However, large amounts of W-PVB are still being buried in landfills every year owing to a lack of recycling techniques. As an alternative, we report the fabrication of carbon nanofibers from natural cellulose and W-PVB composites using a facile electrospinning, carbonization, and KOH activation approach. Interestingly, volatiles and residual carbon from a W-PVB matrix through carbonization produce highly porous carbon nanofibers and a defective graphitic surface layer, respectively. As a result of the large surface area (698.1 m(2) g(-1)) and pore volume (0.2919 cm(3) g(-1)) from abundant micropores, as well as the high density of active sites from defects, resulting carbon nanofiber shows a superior performance in environmental applications. It serves as a metal-free and un-doped carbon catalyst with a half-wave potential of 0.76 V vs RHE for the oxygen reduction reaction and a 99.6% removal of rhodamine B from water as an adsorbent for water remediation. This simple strategy can open a new approach to the design and synthesis of various classes of W-PVB-based composites, which will broaden the reuse of W-PVB in renewable and sustainable applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据