4.7 Article

Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries

期刊

APPLIED SURFACE SCIENCE
卷 508, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.145295

关键词

Metal-organic frameworks; Three-dimensional; Porous structure; Sodium ion batteries; Anode material

资金

  1. National Natural Science Foundation of China (NSFC) [51607054, 51772073, 61475041]
  2. Subtask of National Key R&D Program of China [2016YFF0203103-3, 2017YFC0805703]
  3. Young Talent of Hebei Province [70280011808, 70280016160250]
  4. Hebei Province Outstanding Youth Fund [A2018201019, A2017201082]
  5. Hebei Province Natural Science Fund [A2015201050, E2017201142]

向作者/读者索取更多资源

A novel strategy is exploited herein to fabricate zeolitic-imidazolate frameworks (ZIFs) and bacterial cellulose-derived Co3O4 nanoparticles anchored on three-dimensional nitrogen-doped carbon nanofibers (Co3O4@NCNFs) network by simply growing ZIFs on bacterial cellulose and then applying a two-step annealing process. When utilized as an anode for sodium ion batteries, the as-fabricated Co3O4@N-CNFs electrode exhibits a high capacity (864.2 mA h g(-1) for the first discharge and 450.2 mA h g(-1) after 50 cycles at 100 mA g(-1)), excellent rate performance, and an ultralong cycling life stability (220.1 mA h g(-1) at 1.6 A g(-1) after 1000 cycles), which are better than those of other ZIF-derived cobalt-based oxide composites. The excellent capability can be ascribed to the synergistic effect between the Co3O4 polyhedrons and carbon nanofibers network, in which the unique interconnected nanostructures can decrease the ion diffusion route and enhance the conductivity and structural stability. These results indicate that the as-fabricated Co3O4@N-CNFs can be a promising anode material for high-performance sodium ion batteries. The present strategy for Co3O4@N-CNFs architectures can provide a promising approach for other metal-organic framework-derived materials for high-performance energy storage equipment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据