4.7 Article

An intensify Harris Hawks optimizer for numerical and engineering optimization problems

期刊

APPLIED SOFT COMPUTING
卷 89, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2019.106018

关键词

CEC2017; CEC2018; Multidisciplinary design; Meta-heuristics

向作者/读者索取更多资源

Recently developed Harris Hawks Optimization has virtuous behavior for finding optimum solution in search space. However, it easily get trapped into local search space for constrained engineering optimization problems. In order to accelerate the global search phase of existing Harris Hawks optimizer and to stuck it out of local search space, the proposed research aims to explore the exploration phase of the existing optimizer, the hybrid variant of Harris Hawks optimizer has been developed using sinecosine algorithm and named as Hybrid Harris Hawks-Sine Cosine Algorithm (hHHO-SCA) The effectiveness of the proposed optimizer has been tested for various nonlinear, non-convex and highly constrained engineering design problem. In order to validate the results of the proposed algorithm, 65 standard benchmark problems including CEC2017, CEC2018 and eleven multidisciplinary engineering design optimization problems has been taken into consideration. After verification it has been observed that the outcomes of the proposed hHHO-SCA optimization algorithm is much better than standard sine-cosine optimization algorithm, Harris Hawks Optimizer, Ant Lion Optimizer algorithm, Moth Flame Optimization algorithm, grey wolf optimizer algorithm, and others recently described metaheuristics, heuristics and hybrid type optimization search algorithm and proposed algorithm endorses its effectiveness in multi-disciplinary design and engineering optimization problems. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据