4.5 Article

Pixel super-resolved lens-free on-chip microscopy based on dual laterally shifting modulation

期刊

APPLIED OPTICS
卷 59, 期 11, 页码 3411-3416

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.387428

关键词

-

类别

资金

  1. National Natural Science Foundation of China [51975159]

向作者/读者索取更多资源

Achieving high spatial resolution over a wide field of view (FOV) is the goal of many imaging systems. In a traditional lens-based microscope, designing a complex objective with high numerical aperture (NA) to achieve this goal is a tough and challenging task. The lens-free wide-field imaging method based on phase retrieval provides a new way to bypass the trade-off between the spatial resolution and FOV of conventional microscopy. However, the typical lens-free microscopy usually requires mechanical devices with high precision and repeatability. In this paper, we report a robust and cost-effective pixel super-resolved lens-free imaging method based on dual laterally shifting modulation. A thin diffuser is inserted between the object and the image sensor to be used as the modulator. The diffuser and the object are transversely scanned at the same time to add diversities for phase retrieval and pixel super-resolution, respectively. In this way, the positional shifts of the diffuser and the object can be directly recovered with the registration algorithm, thus addressing the low stability and inaccuracy issues of translation stages. We also propose a pixel super-resolution phase-retrieval algorithm to recover the object and the unknown diffuser. We first use numerical simulations to evaluate the proposed scheme. Then, we validate this approach by imaging a resolution target and a pollen sample, thus achieving an FOV of similar to 30 mm(2) and a half-pitch resolution of 0.78 mu m, which surpasses 2.14 times the theoretical Nyquist-Shannon sampling resolution limit. Finally, the 3D refocusing ability is also verified by imaging a thick mosquito sample. (C) 2020 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据