4.8 Article

Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics

期刊

APPLIED ENERGY
卷 264, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.114724

关键词

Urban landscape; Sensible heat flux; Contribution rate; Diurnal and seasonal variation; Climate adaption; Cooling energy saving

资金

  1. National Natural Science Foundation of China [41922007]
  2. State Key Laboratory of Urban and Regional Ecology of China [SKLURE2019-2-6]
  3. Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration [SHUES2019A01]
  4. WEL Visiting Fellowship Program

向作者/读者索取更多资源

Cooling energy consumption in urban areas is affected significantly by the dynamics of urban heat flux. However, we still lack a clear understanding of the quantitative contribution rate and underlying mechanism of typical urban landscapes to urban heat dynamics, especially in seasonal and diurnal patterns. Here we used a thermal infrared camera and portable meteorological instruments to examine the sensible heat flux (SHF) changes of five typical urban landscapes in Beijing based on surface temperature and concurrent microclimate conditions. Diurnal and seasonal variations of SHF were quantified by comparing changes in forenoon and afternoon in different seasons. Results showed that (1) walls and roads act as heat-source, while forests and water act as heat-sink in all seasons; however, grassland served as heat-sink in summer and spring-autumn, but it becomes a heat-source in winter. (2) The seasonal variation of sensible heat flux of the wall is the greatest, followed by water, while that of trees is the smallest. Besides, the highest sensible heat flux and the maximum variation among typical urban landscapes occur between noon and 2:00 pm. (3) The numerical contribution rate of typical landscapes to sensible heat flux varies with daytime (forenoon and afternoon) and seasonal changes, and these ratios can be used as parameters to adjust the numerical models to obtain more reliable results in surface-energy-flux-related studies. The results of this study can provide a reference for explaining controversial findings based on remote-sensing data, and provide insights into revealing the sensible heat flux mechanism of typical urban landscapes and cooling energy conservation in cities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据