4.8 Article

Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 264, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2019.118531

关键词

Hybrid; Nanoarray; MoSe2-Mo2C; Energy storage; Water splitting

资金

  1. Mid-career Researcher Program through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [2019R1A2C2086747]
  2. Dongguk University [S-2019-G0001-00018]

向作者/读者索取更多资源

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are highly fascinating, efficacious, and low-cost active electrodes for energy storage and water splitting. Molybdenum selenide (MoSe2) is a fascinating 2D TMD system because of its plentiful active selenium edge sites, however, its reported outputs are deficient due to their inactive facet edges and poor conductivity. Herein, we tackled the key issues by engineering hybrid composites using a molybdenum carbide (Mo2C) inserted MoSe2 matrix, in the first time. For this approach, a simple one-step chemical reaction method was employed to synthesize the highly active MoSe2-Mo2C hybrid nanoarrays for energy storage and electrocatalytic water splitting applications. Microscopic analyses clearly showed the formation of Mo2C embedded MoSe2 hybrid nanoarray structured morphology composed of nanosized spherical grains with plenty of active sites. Improved surface area, modified morphology, highly conductive nature, and abundant active sites were obviously confirmed for the MoSe2-Mo2C hybrid. Interestingly, MoSe2-Mo2C hybrid nanoarrays exposed excellent capacitance with superior rate capability behavior and outstanding hydrogen evolution activity with their low overpotential, small Tafel slope and high current density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据