4.6 Article

Salmonella enterica and Escherichia coli in Wheat Flour: Detection and Serotyping by a Quasimetagenomic Approach Assisted by Magnetic Capture, Multiple-Displacement Amplification, and Real-Time Sequencing

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00097-20

关键词

wheat flour; E. coli; Salmonella; detection; sequencing; immunomagnetic separation; food microbiology; food safety

资金

  1. Center for Food Safety, University of Georgia

向作者/读者索取更多资源

Food safety is a new area for novel applications of metagenomics analysis, which not only can detect and subtype foodborne pathogens in a single workflow but may also produce additional information with in-depth analysis capabilities. In this study, we applied a quasimetagenomic approach by combining short-term enrichment, immunomagnetic separation (IMS), multiple-displacement amplification (MDA), and nanopore sequencing real-time analysis for simultaneous detection of Salmonella and Escherichia coli in wheat flour. Tryptic soy broth was selected for the 12-h enrichment of samples at 42 degrees C. Enrichments were subjected to IMS using beads capable of capturing both Salmonella and E. coli. MDA was performed on harvested beads, and amplified DNA fragments were subjected to DNA library preparation for sequencing. Sequencing was performed on a portable device with real-time base-calling adaptability, and resulting sequences were subjected to two parallel pipelines for further analysis. After 1 h of sequencing, the quasimetagenomic approach could detect all targets inoculated at approximately 1 CFU/g flour to the species level. Discriminatory power was determined by simultaneous detection of dual inoculums of Salmonella and E. coli, absence of detection in control samples, and consistency in microbial flora composition of the same flour samples over several rounds of experiments. The total turnaround time for detection was approximately 20 h. Longer sequencing for up to 15 h enabled serotyping for many of the samples with more than 99% genome coverage, which could be subjected to other appropriate genetic analysis pipelines in less than a total of 36 h. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) and Salmonella are of serious concern in low-moisture foods, including wheat flour and its related products, causing illnesses, outbreaks, and recalls. The development of advanced detection methods based on molecular principles of analysis is essential to incorporate into interventions intended to reduce the risk from these pathogens. In this work, a quasimetagenomic method based on real-time sequencing analysis and assisted by magnetic capture and DNA amplification was developed. This protocol is capable of detecting multiple Salmonella and/or E. coli organisms in the sample within less than a day, and it can also generate sufficient whole-genome sequences of the target organisms suitable for subsequent bioinformatics analysis. Multiplex detection and identification were accomplished in less than 20 h and additional whole-genome analyses of different nature were attained within 36 h, in contrast to the several days required in previous sequencing pipelines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据