4.7 Editorial Material

Heme-Oxygenase-1

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 32, 期 17, 页码 1239-1242

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2020.8065

关键词

heme oxygenase; inflammation; oxidative stress; metabolic disease; cancer

资金

  1. ANPCyT [PICT 2016-4454]
  2. Universidad Nacional del Sur, Bahi'a Blanca, Buenos Aires, Argentina [PGI 24/B285]

向作者/读者索取更多资源

This Forum issue Heme Oxygenase (HO) includes original research articles and reviews that are aimed at understanding the role of HO-1 in several pathophysiological conditions, specially addressing those involving inflammation and oxidative damage. Overall, the seven contributions of this Forum highlight the dual role that HO-1 displays in cells and tissues, and address the molecular and cellular mechanisms through which HO-1 participates in the pathophysiology of the metabolic syndrome, obesity, cancer, and neurodegenerative, neurodevelopmental, and inflammatory bowel diseases. Indeed, one of the reviews thoroughly describes evidence of the anti-inflammatory properties of HO-1 in gut homeostasis, with potential to attenuate inflammatory bowel diseases. Three other reviews show the mostly beneficial effect of HO-1 expression in the attenuation of metabolic syndrome, obesity, cardiovascular disease, and diabetic cardiomyopathy. Contrariwise, one of the original articles show the overexpression of HO-1 in astroglia, models neurodegenerative (Parkinson-like) or neurodevelopmental (Schizophrenia-like) behaviors in mice, depending on the timing of expression of HO-1 during lifespan. The other original research communication demonstrates the role of HO-1 on the tropism of prostate cancer cells to bone, thus showing the involvement of this protein in the communication between bone and cancer cells. Finally, the Forum issue includes a review that elaborates on the classic and ultimate knowledge of HO-1 transcriptional regulation as well as the mechanisms of alternative splicing and post-transcriptional regulation of Hmox1 gene expression that have been little explored. Antioxid. Redox Signal. 32, 1239-1242.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据