4.8 Article

Selective Enzymatic Oxidation of Silanes to Silanols

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 59, 期 36, 页码 15507-15511

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202002861

关键词

biocatalysis; directed evolution; monooxygenation; P450 enzymes; silanols

资金

  1. Dow University Partnership Initiative [227027AO]
  2. Rothenberg Innovation Initiative (RI2) Program
  3. NIH National Institute for General Medical Sciences [GM-124480]
  4. Deutsche Forschungsgemeinschaft (DFG) Postdoctoral Fellowship [BA 6604/1-1]
  5. Spanish MINECO [IJCI-2017-33411]

向作者/读者索取更多资源

Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild-type cytochrome P450 monooxygenase (P450(BM3) from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non-native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C-H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C-H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据