4.7 Article

Analysis of cranberry proanthocyanidins using UPLC-ion mobility-high-resolution mass spectrometry

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 412, 期 15, 页码 3653-3662

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-020-02601-z

关键词

Proanthocyanidin; Ion mobility; Drift time; Cranberry; Mass spectrometry

资金

  1. Agricultural Research Service of the U.S. Department of Agriculture
  2. Office of Dietary Supplements of the National Institute of Health

向作者/读者索取更多资源

Cranberry proanthocyanidin oligomers were investigated using ultra performance liquid chromatography-ion mobility-high-resolution mass spectrometry (UPLC-IM-HRMS). A total of 304 individual A-type and B-type proanthocyanidins, including 40 trimers, 68 tetramers, 53 pentamers, 54 hexamers, 49 heptamers, 28 octamers, and 12 nonamers, were characterized. A-type proanthocyanidins appeared to dominate the cranberry proanthocyanidins. As the degree of polymerization increased, the abundance of molecules with multiple A-type double inter-flavan linkage or having doubly charged ions also increased. Under the same charge state, the drift times of proanthocyanidin ions increased with their degree of polymerization or the number of double inter-flavan linkages. For the same proanthocyanidin molecules, doubly charged ions had shorter drift times compared to their singly charged counterparts, which lead to separated trendlines in the ion mobility-mass plot. While consistent ion mobility was observed for most proanthocyanidins with the same degree of polymerization, coeluted isomeric ions of trimer and tetramer were detected by their unique drift times. Incorporation of ion mobility into HRMS proved to be of great value to characterize and analyze proanthocyanidins from complex sample matrices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据