4.7 Article

Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches

期刊

AGRICULTURAL WATER MANAGEMENT
卷 233, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2020.106090

关键词

Random forest; Extreme gradient boosting; Machine learning; Groundwater level; Evapotranspiration; Precipitation

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada [RDCPJ 477937-14]

向作者/读者索取更多资源

Integrated groundwater management is a major challenge for industrial, agricultural and domestic activities. In some agricultural production systems, optimized water table management represents a significant factor to improve crop yields and water use. Therefore, predicting water table depth (WTD) becomes an important means to enable real-time planning and management of groundwater resources. This study proposes a decision-treebased modelling approach for WTD forecasting as a function of precipitation, previous WTD values and evapotranspiration with applications in groundwater resources management for cranberry farming. Firstly, two decision-tree-based models, namely Random Forest (RF) and Extreme Gradient Boosting (XGB), were parameterized and compared to predict the WTD up to 48 -h ahead for a cranberry farm located in Quebec, Canada. Secondly, the importance of the predictor variables was analyzed to determine their influence on WTD simulation results. WTD measurements at three observation wells within a cranberry field, for the growing period from July 8, 2017 to August 30, 2017, were used for training and testing the models. Statistical parameters such as the mean squared error, coefficient of determination and Nash-Sutcliffe Efficiency coefficient were used to measure models performance. The results show that the XGB model outperformed the RF model for all predictions of WTD and was, accordingly, selected as the optimal model. Among the predictor variables, the antecedent WTD was the most important for water table depth simulation, followed by the precipitation. Based on the most important variables and optimal model, the prediction error for entire WTD range was within +/- 5 cm for 1-, 12-, 24-, 36- and 48 -h predictions. The XGB models can provide useful information on the WTD dynamics and a rigorous simulation for irrigation planning and management in cranberry fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据