4.8 Article

Controlling Crystal Growth via an Autonomously Longitudinal Scaffold for Planar Perovskite Solar Cells

期刊

ADVANCED MATERIALS
卷 32, 期 26, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202000617

关键词

crystal growth; flexible devices; perovskite solar cells; poly(methyl methacrylate); scaffolds; sequential deposition

资金

  1. National Natural Science Foundation of China (NSFC) [51973088, 51663015, 51672121, 51673091, 51833004, U1801256]

向作者/读者索取更多资源

Sequential deposition is certified as an effective technology to obtain high-performance perovskite solar cells (PVSCs), which can be derivatized into large-scale industrial production. However, dense lead iodide (PbI2) causes incomplete reaction and unsatisfactory solution utilization of perovskite in planar PVSCs without mesoporous titanium dioxide as a support. Here, a novel autonomously longitudinal scaffold constructed by the interspersion of in situ self-polymerized methyl methacrylate (sMMA) in PbI2 is introduced to fabricate efficient PVSCs with excellent flexural endurance and environmental adaptability. By this strategy perovskite solution can be confined within an organic scaffold with vertical crystal growth promoted, effectively inhibiting exciton accumulation and recombination at grain boundaries. Additionally, sMMA cross-linked perovskite network can release mechanical stress and occupy the main channels for ion migration and water/oxygen permeation to significantly improve operational stability, which opens up a new strategy for the commercial development of large-area PVSCs in flexible electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据