4.8 Article

Stable Rhodium (IV) Oxide for Alkaline Hydrogen Evolution Reaction

期刊

ADVANCED MATERIALS
卷 32, 期 25, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201908521

关键词

compressive strain; electrocatalysis; hydrogen evolution reaction; noble metal oxides; water electrolysis

资金

  1. National Natural Science Foundation of China (NSFC) [51871160, 51671141, 51471115]

向作者/读者索取更多资源

Water electrolysis in alkaline electrolyte is an attractive way toward clean hydrogen energy via the hydrogen evolution reaction (HER), whereas the sluggish water dissociation impedes the following hydrogen evolution. Noble metal oxides possess promising capability for catalyzing water dissociation and hydrogen evolution; however, they are never utilized for the HER due to the instability under the reductive potential. Here it is shown that compressive strain can stabilize RhO2 clusters and promote their catalytic activity. To this end, a strawberry-like structure with RhO2 clusters embedded in the surface layer of Rh nanoparticles is engineered, in which the incompatibility between the oxide cluster and the metal substrate causes intensive compressive strain. As such, RhO2 clusters remain stable at a reduction potential up to -0.3 V versus reversible hydrogen electrode and present an alkaline HER activity superior to commercial Pt/C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据