4.8 Article

A Multifunctional Electronic Skin Empowered with Damage Mapping and Autonomic Acceleration of Self-Healing in Designated Locations

期刊

ADVANCED MATERIALS
卷 32, 期 17, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202000246

关键词

damage mapping; electronic skins; multifunctional sensing platforms; self-healing soft electronics

资金

  1. Neubauer Family Foundation
  2. Phase-II Grand Challenges Explorations award of the Bill and Melinda Gates Foundation [OPP1109493]
  3. Horizon 2020 ICT grant under the A-Patch project

向作者/读者索取更多资源

Integrating self-healing capabilities into soft electronic devices and sensors is important for increasing their reliability, longevity, and sustainability. Although some advances in self-healing soft electronics have been made, many challenges have been hindering their integration in digital electronics and their use in real-world conditions. Herein, an electronic skin (e-skin) with high sensing performance toward temperature, pressure, and pH levels-both at ambient and/or in underwater conditions is reported. The e-skin is empowered with a novel self-repair capability that consists of an intrinsic mechanism for efficient self-healing of small-scale damages as well as an extrinsic mechanism for damage mapping and on-demand self-healing of big-scale damages in designated locations. The overall design is based on a multilayered structure that integrates a neuron-like nanostructured network for self-monitoring and damage detection and an array of electrical heaters for selective self-repair. This system has significantly enhanced self-healing capabilities; for example, it can decrease the healing time of microscratches from 24 h to 30 s. The electronic platform lays down the foundation for the development of a new subcategory of self-healing devices in which electronic circuit design is used for self-monitoring, healing, and restoring proper device function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据