4.8 Article

Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogen-Doped Carbon: Superior Potassium-Ion Storage and Insight into Potassium Storage Mechanism

期刊

ADVANCED MATERIALS
卷 32, 期 22, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202000958

关键词

chemical bonding; heterostructures; MoS; (2); MoSe; (2); potassium-ion batteries

资金

  1. National Key R&D Program of China [2018YFB0905400, 2017YFA0206301]
  2. National Natural Science Foundation of China [51925207, U1910210, 21605136, 51872277]
  3. Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund
  4. CAS [DNL 180310]
  5. Fundamental Research Funds for the Central Universities [Wk2060140026]

向作者/读者索取更多资源

Constructing 2D heterostructure materials by stacking different 2D materials can combine the merits of the individual building blocks while eliminating their shortcomings. Dichalcogenides are attractive anodes for potassium-ion batteries (KIBs) due to their high theoretical capacity. However, the practical application of dichalcogenide is greatly hampered by the poor electrochemical performance due to sluggish kinetics of K+ insertion and the electrode structure collapse resulting from the large K+ insertion. Herein, heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon (MoS2, MoSe2-on-NC) are prepared to boost their potassium storage performance. The unique 2D heterostructures possess built-in heterointerfaces, facilitating K+ diffusion. The robust chemical bonds (C-S, C-Se, C-Mo bonds) enhance the mechanical strength of electrodes, thus suppressing the volume expansion. The 2D N-doped carbon nanosheets interconnected as a 3D structure offer a fast diffusion path for electrons. Benefitting from these merits, both the MoS2-on-NC and the MoSe2-on-NC exhibit unprecedented cycle life. Moreover, the electrochemical reaction mechanism of MoSe2 is revealed during the process of potassiation and depotassiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据