4.8 Article

Autonomously Responsive Membranes for Chemical Warfare Protection

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 25, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202000258

关键词

breathable membranes; carbon nanotube pores; chemical-warfare-agents; live agents; protective membranes; responsive polymers

资金

  1. Chemical and Biological Technologies Department of the Defense Threat Reduction Agency (DTRA-CB) [BA12PHM123]
  2. US Department of Energy [DE-AC52-07NA27344]
  3. Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Stimuli-responsive materials offer new opportunities to resolve long-standing material challenges and are rapidly gaining pivotal roles in diverse applications. For example, smart protective garments that rapidly transport water vapor and autonomously block chemical threats are expected to enable an effective new paradigm of adaptive personal protection. However, the incorporation of these seemingly incompatible properties into a single responsive system remains elusive. Herein, a bistable membrane that can rapidly, selectively, and reversibly transition from a highly breathable state in a safe environment to a chemically protective state when exposed to organophosphate threats such as sarin is demonstrated. Dynamic response to chemical stimuli is achieved through the physical collapse of an ultrathin copolymer layer on the membrane surface, which efficiently gates transport through membrane pores composed of single-walled carbon nanotubes (SWNTs). The adoption of nanometer-wide SWNTs for ultrafast moisture conduction enables a simultaneous boost in size-sieving selectivity and water-vapor permeability by decreasing nanotube diameter, thereby overcoming the breathability/protection trade-off that limits conventional membrane materials. Adaptive multifunctional membranes based on this platform greatly extend the active use of a protective garment and present exciting opportunities in many other areas including separation processes, sensing, and smart delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据