4.8 Article

Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes

期刊

CARBON
卷 106, 期 -, 页码 152-157

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.05.017

关键词

-

资金

  1. US National Science Foundation [CMMI 1030958]

向作者/读者索取更多资源

The exceptional thermal conductivity of individual carbon nanotubes have rarely materialized in bulk materials mainly due to the large thermal contact resistance between carbon nanotubes (CNTs). This can be attributed to weak van der Waals bonding at the CNT junctions where the outstanding phonon transport along the strong covalent bonding on the graphitic layer is largely impeded. In bulk materials, however, it has been extremely difficult to achieve covalently bonded junctions between CNTs. Here we report polymer composites consisting of sponge-like CNT structures whose junctions between CNTs are covalently bonded, resulting in a high thermal conductivity and a low Young's modulus, which are hard to achieve at the same time. The low modulus allows thermal interface material (TIM) to easily deform to make the surfaces of heat sink/source fully in contact, which is essential for TIM. Our facile scalable preparation process also makes our composite very attractive as TIM as well as provides insight to better utilize high thermal conductivity of CNTs. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据