4.8 Article

Gate-Tunable Reversible Rashba-Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature

期刊

ACS NANO
卷 14, 期 5, 页码 5251-5259

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c01037

关键词

Rashba-Edelstein effect; spin galvanic effect; spin-orbit coupling; charge-to-spin conversion; graphene/transition-metal dichalcogenide heterostructures; spintronics

资金

  1. Korea NRF [2017R1D1A1B03030877, 2019M3F3A1A03079760]
  2. Institute for Basic Science [IBS-R009-G2]
  3. Royal Society of London
  4. Global Challenges Research Fund award [CHG-R1-170063]
  5. Institute for Information & Communication Technology Planning & Evaluation (IITP), Republic of Korea [2019M3F3A1A03079760] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  6. National Research Foundation of Korea [IBS-R009-D1-2020-A00, 2017R1D1A1B03030877] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We report the observation of current-induced spin polarization, the Rashba-Edelstein effect (REE), and its Onsager reciprocal phenomenon, the spin galvanic effect (SGE), in a few-layer graphene/2H-TaS2 heterostructure at room temperature. Spin-sensitive electrical measurements unveil full spin-polarization reversal by an applied gate voltage. The observed gate-tunable charge-to-spin conversion is explained by the ideal work function mismatch between 2H-TaS2 and graphene, which allows for a strong interface-induced Bychkov-Rashba interaction with a spin-gap reaching 70 meV, while keeping the Dirac nature of the spectrum intact across electron and hole sectors. The reversible electrical generation and control of the nonequilibrium spin polarization vector, not previously observed in a nonmagnetic material, are elegant manifestations of emergent two-dimensional Dirac Fermions with robust spin-helical structure. Our experimental findings, supported by first-principles relativistic electronic structure and transport calculations, demonstrate a route to design low-power spin-logic circuits from layered materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据