4.8 Article

Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb2O5-x Nanocluster toward Superior Li-S Performance

期刊

ACS NANO
卷 14, 期 4, 页码 4849-4860

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c00799

关键词

nanocluster; defect; electrocatalytic; amorphous structure; lithium-sulfur batteries

资金

  1. University of Waterloo
  2. Natural Science and Engineering Research Council of Canada

向作者/读者索取更多资源

The notorious shuttling behaviors and sluggish conversion kinetics of the intermediate lithium polysulfides (LPS) are hindering the practical application of lithium sulfur (Li-S) batteries. Herein, an ultrafine, amorphous, and oxygendeficient niobium pentoxide nanocluster embedded in microporous carbon nanospheres (A-Nb2O5-x@MCS) was developed as a multifunctional sulfur immobilizer and promoter toward superior shuttle inhibition and conversion catalyzation of LPS. The A-Nb2O5-x nanocluster implanted framework uniformizes sulfur distribution, exposes vast active interfaces, and offers a reduced ion/electron transportation pathway for expedited redox reaction. Moreover, the low crystallinity feature of A-Nb2O5-x manipulates the LPS chemical affinity, while the defect chemistry enhances the intrinsic conductivity and catalytic activity for rapid electrochemical conversions. Attributed to these superiorities, A-Nb2O5-x@MCS delivers good Li-S battery performances, that is, high areal capacity of 6.62 mAh cm(-2) under high sulfur loading and low electrolyte/sulfur ratio, superb rate capability, and cyclability over 1200 cycles with an ultralow capacity fading rate of 0.024% per cycle. This work provides a synergistic regulation on crystallinity and oxygen deficiency toward rapid and durable sulfur electrochemistry, holding a great promise in developing practically viable Li-S batteries and enlightening material engineering in related energy storage and conversion areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据