4.8 Article

Full-Process Radiosensitization Based on Nanoscale Metal-Organic Frameworks

期刊

ACS NANO
卷 14, 期 3, 页码 3032-3040

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b07898

关键词

radiotherapy; chemodynamic therapy; metal-organic frameworks; hydroxyl radicals; full-process radiosensitization

资金

  1. National Funds for Distinguished Young Scientists [51725202]
  2. National Natural Science Foundation of China [51872094, 81472794]
  3. Key Project of Shanghai Science and Technology Commission [19JC1412000]
  4. National Science Foundation for the Young Scientists of China [21805090, 51702211]
  5. China Postdoctoral Science Foundation [2018M632060]
  6. Shanghai Municipal Commission of Health [2018BR23]
  7. Shanghai Municipal Commission of Science and Technology [18441904400, 17411963600]

向作者/读者索取更多资源

Full-process radiosensitization, that is, pre-increasing radiation sensitivity of cancer cells, magnifying center dot OH formation during ionizing irradiation, and intervention on the resultant DNA repair for final cells death, could enhance the overall radiotherapeutic effects, but has not yet been achieved. Herein, Hf-nMOFs with Fe3+ ions uniformly dispersed (Hf-BPY-Fe) were constructed to integratedly improve radiotherapeutic effects via a multifaceted mechanism. The in vitro experiments demonstrated that persistent reactive oxygen species stress from Hf-BPY-Fe-activated in situ Fenton reaction reassorted cell cycle distribution, consequently contributing to increased tumoral radiosensitivity to photon radiation. Upon irradiation during the course of radiation therapy, Hf4+ in Hf-BPY-Fe gave substantial amounts of high-energy electrons, which partially converted H2O to center dot OH and, meanwhile, relaxed to a low-energy state in nMOF pores, leading to an electron-rich environment. These aggregated electrons facilitated the reduction from Fe3+ to Fe2+ and further promoted the production of center dot OH in the Fenton process to attack DNA. The Hf-BPY-Fe postponed the DNA damage response process by interfering with certain proteins involved in the DNA repair signaling pathway. The in vivo experiments showed improved radiotherapeutic effects from integrated contributions from Fe3+-based Fenton reaction and Hf4+-induced X-ray energy conversion in tumors. This work provides a nMOFs-based full-process radiosensitizing approach for better radiotherapeutic efficacy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据