4.6 Article

Custom DNA Microarrays Reveal Diverse Binding Preferences of Proteins and Small Molecules to Thousands of G-Quadruplexes

期刊

ACS CHEMICAL BIOLOGY
卷 15, 期 4, 页码 925-935

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acschembio.9b00934

关键词

-

资金

  1. National Institutes of Health
  2. NATIONAL CANCER INSTITUTE [ZIABC011585] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Single-stranded DNA (ssDNA) containing four guanine repeats can form G-quadruplex (G4) structures. While cellular proteins and small molecules can bind G4s, it has been difficult to broadly assess their DNA-binding specificity. Here, we use custom DNA microarrays to examine the binding specificities of proteins, small molecules, and antibodies across, similar to 15,000 potential G4 structures. Molecules used include fluorescently labeled pyridostatin (Cy5-PDS, a small molecule), BG4 (Cy5-BG4, a G4-specific antibody), and eight proteins (GST-tagged nucleolin, IGF2, CNBP, FANCJ, PIF1, BLM, DHX36, and WRN). Cy5-PDS and Cy5-BG4 selectively bind sequences known to form G4s, confirming their formation on the microarrays. Cy5-PDS binding decreased when G4 formation was inhibited using lithium or when ssDNA features on the microarray were made double-stranded. Similar conditions inhibited the binding of all other molecules except for CNBP and PIF1. We report that proteins have different G4-binding preferences suggesting unique cellular functions. Finally, competition experiments are used to assess the binding specificity of an unlabeled small molecule, revealing the structural features in the G4 required to achieve selectivity. These data demonstrate that the microarray platform can be used to assess the binding preferences of molecules to G4s on a broad scale, helping to understand the properties that govern molecular recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据