4.8 Article

Progressive Myofibril Reorganization of Human Cardiomyocytes on a Dynamic Nanotopographic Substrate

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 19, 页码 21450-21462

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c03464

关键词

human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs); stimuli-responsive biomaterials; nanotopography; shape memory polymer (SMP); cardiac mechanobiology

资金

  1. National Science Foundation [NSF CBET-1804875, 1943798]
  2. Nappi Family Foundation Research Scholar Project
  3. SU Collaboration for Unprecedented Success and Excellence (CUSE) Grant
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1943798] Funding Source: National Science Foundation

向作者/读者索取更多资源

Cardiomyocyte (CM) alignment with striated myofibril organization is developed during early cardiac organogenesis. Previous work has successfully achieved in vitro CM alignment using a variety of biomaterial scaffolds and substrates with static topographic features. However, the cellular processes that occur during the response of CMs to dynamic surface topographic changes, which may provide a model of in vivo developmental progress of CM alignment within embryonic myocardium, remains poorly understood. To gain insights into these cellular processes involved in the response of CMs to dynamic topographic changes, we developed a dynamic topographic substrate that employs a shape memory polymer coated with polyelectrolyte multilayers to produce a flat-to-wrinkle surface transition when triggered by a change in incubation temperature. Using this system, we investigated cellular morphological alignment and intracellular myofibril reorganization in response to the dynamic wrinkle formation. Hence, we identified the progressive cellular processes of human-induced pluripotent stem cell-CMs in a time-dependent manner, which could provide a foundation for a mechanistic model of cardiac myofibril reorganization in response to extracellular microenvironment changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据