4.8 Article

Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb2Se3-CdS Interfacial Layer in Sb2Se3 Thin-Film Photovoltaics

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 19, 页码 21730-21738

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c03690

关键词

Sb2Se3 photovoltaics; grain texture; Kirkendall voids; grain boundary relaxation; Sb2Se3-CdS interface

资金

  1. North East Centre for Energy Materials (NECEMs) (EPSRC) [EP/R021503/1]
  2. EPSRC [EP/L000202, EP/R029431, EP/P023843/1]
  3. University of York
  4. EPSRC [EP/R021503/1, EP/N014057/1, EP/R029431/1, EP/P023843/1] Funding Source: UKRI

向作者/读者索取更多资源

The crystal structure of Sb2Se3 gives rise to unique properties that cannot otherwise be achieved with conventional thin-film photovoltaic materials, such as CdTe or Cu(In,Ga)Se-2. It has previously been proposed that grain boundaries can be made benign provided only the weak van der Waals forces between the (Sb4Se6)(n) ribbons are disrupted. Here, it is shown that non-radiative recombination is suppressed even for grain boundaries cutting across the (Sb4Se6) n ribbons. This is due to a remarkable self-healing process, whereby atoms at the grain boundary can relax to remove any electronic defect states within the band gap. Grain boundaries can, however, impede charge transport due to the fact that carriers have a higher mobility along the (Sb4Se6) n ribbons. Because of the ribbon misorientation, certain grain boundaries can effectively block charge collection. Furthermore, it is shown that CdS is not a suitable emitter to partner Sb2Se3 due to Sb and Se interdiffusion. As a result, a highly defective Sb2Se3 interfacial layer is formed that potentially reduces device efficiency through interface recombination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据