4.8 Article

Dominant Role of Heterojunctions in Gas Sensing with Composite Materials

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 18, 页码 21127-21132

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c05173

关键词

heterojunction; composite materials; metal oxides; gas sensor

向作者/读者索取更多资源

It is well known that composite materials, consisting of at least two metal oxides, show qualities and sensing behavior very different from the single components. Recently, the preparation of core-shell nanomaterials for gas sensors has become extremely popular. Specifically, these materials have been found to show desirable sensor responses. The preparation of core-shell nanomaterials is, however, complex, limiting the commercial applicability. Composite materials can be more easily attained simply through the mechanical mixing of the various components. Although some studies exist that attempt to compare mechanically mixed composites to those prepared via a synthetic route, these examinations are often flawed, as due to varying preparation methods, the basic characteristics of the materials are not the same. Here, it was possible to separate the role of the contacts between the materials from that of the secondary core-shell structure, by using a soft method to mechanically break apart the structure. This ensures that the difference in morphology is the only change in the material characteristics. It was verified that the composite materials show a different sensing behavior from that of the pure materials. It was also found that regardless of the secondary structure, the composite materials showed very similar sensor responses. By examining materials containing different ratios of Cr2O3 to SnO2, it was possible to attribute the sensor behavior changes to the contacts between the different metal oxides. It was shown that by varying the concentration of each oxide it is possible to attain either an n- or p-type response and at a certain concentration even no response. This work is significant because it identifies that the contact between the materials plays the dominant role in the sensor response and it shows the viability of mechanical mixing for composite sample preparation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据