4.8 Article

Designing Photocatalytic Nanostructured Antibacterial Surfaces: Why Is Black Silica Better than Black Silicon?

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 18, 页码 20202-20213

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c02854

关键词

titanium dioxide; photocatalytic activity; absorption depth; diffusion length; black silicon

资金

  1. MHRD
  2. DST Nano Mission
  3. MeitY

向作者/读者索取更多资源

The efficiency of photocatalytic antibacterial surfaces is limited by the absorption of light in it. Light absorption in photocatalytic surfaces can be enhanced by structuring it, leading to increased generation of reactive oxygen species (ROS) and hence improved bactericidal efficacy. A second, more passive methodology to kill bacteria involves the use of sharp nanostructures that mechanically disrupt the bacterial membrane. Recently, these two mechanisms were combined to form photoactive nanostructured surfaces with better antibacterial efficacy. However, the design rules for fabricating the optimal photoactive nanostructured surfaces have not been articulated. Here we show that for optimal performance it is very important to account for optoelectrical properties and geometry of the photoactive coating and the underlying pillar. We show that TiO2-coated nanopillars arrays made of SiO2, a material with a low extinction coefficient, have 73% higher bactericidal efficacies than those made of Si, a material with a high extinction coefficient. The finite element method (FEM) shows that despite the higher absorption in higher aspect ratio nanopillars, their performance is not always better. The concentration of bulk ROS saturates around 5 mu m. For taller pillars, the improvement in surface ROS concentration is minimal due to the diffusion bottleneck. Simulation results corroborate with the experimentally observed methylene blue degradation and bacterial count measurements and provide an explanation of the observed phenomenon. The guidelines for designing these optically activated photocatalyst nanopillars can be extended to other photocatalytic material after adjusting for their respective properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据