4.8 Article

Bioinspired Helical Micromotors as Dynamic Cell Microcarriers

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 14, 页码 16097-16103

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c01264

关键词

micromotor; microcarrier; microfluidics; fiber; tissue engineering

资金

  1. National Natural Science Foundation of China [61927805, 51522302]
  2. Natural Science Foundation of Jiangsu [BE2018707]
  3. Scientific Research Foundation of Nanjing University

向作者/读者索取更多资源

Micromotors have exhibited great potential in multidisciplinary nanotechnology, environmental science, and especially biomedical engineering due to their advantages of controllable motion, long lifetime, and high biocompatibility. Marvelous efforts focusing on endowing micromotors with novel characteristics and functionalities to promote their applications in biomedical engineering have been taken in recent years. Here, inspired by the flagellar motion of Escherichia coli, we present helical micromotors as dynamic cell microcarriers using simple microfluidic spinning technology. The morphologies of micromotors can be easily tailored because of the highly controllable and feasible fabrication process including microfluidic generation and manual dicing. Benefiting from the biocompatibility of the materials, the resultant helical micromotors could be ideal cell microcarriers that are suitable for cell seeding and further cultivation; the magnetic nanoparticle encapsulation imparts the helical micromotors with kinetic characteristics in response to mobile magnetic fields. Thus, the helical micromotors could be applied as dynamic cell culture blocks and further assembled to complex geometrical structures. The constructed structures out of cell-seeded micromotors could find practical potential in biomedical applications as the stack-shaped assembly embedded in the hydrogel may be used for tissue repairing and the tube-shaped assembly due to its resemblance to vascular structures in the microchannel for organ-on-a-chip study or blood vessel regeneration. These features manifest the possibility to broaden the biomedical application scope for micromotors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据