4.2 Article

Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3386162

关键词

Error Aware compilation; Experimental Quantum Computation; Quantum Programming Tools

资金

  1. MEXT Quantum Leap Flagship Program [JPMXS0118067285]

向作者/读者索取更多资源

NISQ (Noisy, Intermediate-Scale Quantum) computing requires error mitigation to achieve meaningful computation. Our compilation tool development focuses on the fact that the error rates of individual qubits are not equal, with a goal ofmaximizing the success probability of real-world subroutines such as an adder circuit. We begin by establishing a metric for choosing among possible paths and circuit alternatives for executing gates between variables placed far apart within the processor, and test our approach on two IBM 20-qubit systems named Tokyo and Poughkeepsie. We find that a single-number metric describing the fidelity of individual gates is a useful but imperfect guide. Our compiler uses this subsystem and maps complete circuits onto the machine using a beam search-based heuristic that will scale as processor and program sizes grow. To evaluate the whole compilation process, we compiled and executed adder circuits, then calculated the Kullback-Leibler divergence (KL-divergence, a measure of the distance between two probability distributions). For a circuit within the capabilities of the hardware, our compilation increases estimated success probability and reduces KL-divergence relative to an error-oblivious placement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据