4.8 Article

Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids

期刊

CARBON
卷 105, 期 -, 页码 474-483

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.04.071

关键词

-

资金

  1. Project Associated Laboratory LSRE-LCM - FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalizac
  2. ao (POCI) [POCI-01-0145-FEDER-006984]
  3. national funds through FCT - Fundacao para a Ciencia e a Tecnologia
  4. Spanish MINECO
  5. European Regional Development Fund [MAT2015-69844-R, MAT2012-34011]

向作者/读者索取更多资源

Activated carbon xerogels with a cellular morphology were obtained from hydrothermally carbonized glucose-graphene oxide (GO) hybrids and tested as supercapacitor electrodes. The effect of the chemical activation (using KOH) on the nanometer-scale morphology, local structure, porous texture and surface chemistry of the resulting carbon materials was investigated and correlated with their electrochemical behaviour. The electrochemical performance of the activated xerogels was studied in a three-electrode cell using 1 M H2SO4 as the electrolyte. The results underlined the relevant role played by the xerogel nanomorphology; more specifically, xerogels with cellular structures exhibiting well-connected, continuous and very thin (similar to 5-15 nm) carbon walls (prepared with lower amounts of activating agent) favored ionic diffusion and electronic conduction compared to materials with broken, thicker walls (obtained from higher amounts of activating agent). The effect of nanomorphology and local structure was also made apparent when the xerogels were used as actual supercapacitor electrodes. Particularly, a symmetric capacitor assembled from a carbon xerogel with very thin walls and relatively high graphitic character delivered a much higher specific capacitance than that of a commercial activated carbon (223 vs 153 F g(-1) at 100 mA g(-1)) as well as a significantly improved retention of capacitance at high current densities. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据