4.8 Article

A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage

期刊

CARBON
卷 99, 期 -, 页码 633-641

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2015.12.035

关键词

-

资金

  1. National Natural Science Foundation of China [51273158, 21303131]
  2. Natural Science Basis Research Plan in Shaanxi Province of China [2012JQ6003, 2013KJXX-49]
  3. Ph.D. Programs Foundation of Ministry of Education of China [20120201120048]
  4. Program for New Century Excellent Talents in University [NCET-13-0449]
  5. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

As a member of the ternary metal oxide family, nickel cobaltite is considered as a promising electrode material. This is due to its high theoretical capacity, low diffusional resistance to protons, ease of electrolyte penetration, superior ionic/electronic conductivity and higher electrochemical activity compared to single metallic oxides such as NiO or Co3O4. However, NiCo2O4's relatively low electrical conductivity and its tendency to pulverize due to the volume changes experienced during the charge-discharge process remain a pressing issue to be solved. Here we demonstrate a simple co-precipitation and calcination routine to graft ultrathin NiCo2O4 nanosheets onto highly-ordered mesoporous carbon CMK-3 to form a new mesoporous-nanosheet structure which can accommodate stresses induced by volume changes and provide favourable conducting paths. The material exhibits a high specific surface area and excellent electrochemical performance, which can be ascribed to the ultrathin NiCo2O4 nanosheets and the interconnected conductive network of the mesoporous matrix. The nanosheets and the inner channels of CMK-3 are more beneficial to the diffusion of Li+ while the interconnected conductive network favours fast electron conduction. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据