4.8 Article

Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells

期刊

CARBON
卷 103, 期 -, 页码 449-456

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.03.044

关键词

-

资金

  1. National Natural Science Foundation of China [51372186]
  2. National Basic Research Development Program of China (973Program) [2012CB215504]
  3. Natural Science Foundation of Hubei Province of China [2013CFA082]

向作者/读者索取更多资源

The low utilization and stability of noble-metal catalysts is always a big barrier to commercialize proton exchange membrane (PEM) fuel cells. Here we report a positive progress on stabilizing the catalyst by modulating 2D graphene as an advanced support of Pt nanoparticles, where the interlayer of graphene is near perfectly intercalated by nano-B4C ceramics. The strong restriction effect of nano-ceramics in graphene interlayers, can greatly improves the usage and electrochemical stability of Pt catalysts. As results, our new graphene/B4C supported Pt catalyst (Pt-RGO/B4C) shows greatly enhanced electrochemical surface area (121 m(2) g(-1)) and mass activity (185 A g(-1) Pt) towards oxygen reduction reaction (ORR), which is remarkably higher than the reduced graphene oxide (RGO) supported Pt (Pt/RGO) catalyst and the commercial Pt/C catalyst. In addition, the Pt-RGO/B4C electrode also possesses higher fuel cell performance than the Pt/RGO electrode. Especially, after the electrochemical acceleration test for 10000 cycles, our new catalyst presents an excellent stability, even retains 45.2% initial electrochemical surface area, while the Pt/RGO and Pt/C are only 29.7 and 23.4%, respectively. These indicate our unique catalyst is promising to allow the PEM fuel cell have high ORR activity and stability. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据