4.8 Article

Geometrical features can predict electronic properties of graphene nanoflakes

期刊

CARBON
卷 103, 期 -, 页码 142-150

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.03.005

关键词

-

资金

  1. Australian National Computing Infrastructure national facility [q27]

向作者/读者索取更多资源

The experimental discovery of graphene has produced an avalanche of theoretical and computational studies to understand the behaviour of this fascinating material. However, the intrinsic relationships between nanoscale features and graphene stability, electronic properties and reactivity remains poorly investigated. In this work, we correlate the electronic properties of 622 computationally optimized graphene structures to their structural features using machine learning algorithms. Machine learning models of the electron affinity (E-A), energy of the Fermi level (E-F), electronic band gap (E-G) and ionization potential (E-I) are calibrated with structural features of 70% of the dataset describing more than 70% of cross-validation variance. Moreover, the predictions of the values of all the properties of a test set of the remaining 30% of dataset were specially accurate with a strong correlation of R-2 similar to 0.9. Machine learning models have tremendous potential to rapidly identify hypothetical nanostructures with desired electronic properties that, considering the latest advances in graphene synthesis and functionalization, could be experimentally prepared in a near future. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据