4.8 Article

Electronic properties of carbon nanotubes linked covalently with iron phthalocyanine to determine the formation of high-valent iron intermediates or hydroxyl radicals

期刊

CARBON
卷 100, 期 -, 页码 408-416

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.01.010

关键词

-

资金

  1. National Natural Science Foundation of China [51133006, 51103133]
  2. Textile Vision Science Education Fund
  3. 521 Talent Project of ZSTU
  4. Zhejiang Provincial Natural Science Foundation of China [LY14E030013]
  5. Public Welfare Technology Application Research Project of Zhejiang Province [2015C33018]

向作者/读者索取更多资源

Two different nanomaterial-based metallophthalocyanine catalysts were synthesized by immobilizing iron trinitrophthalocyanine with amino (FeMATNPc) covalently on multi-walled carbon nanotubes (MWCNTs) by deamination-synthesized MWCNTs-FeTNPc and on oxidized MWCNTs by amidation-synthesized MWCNTs-CONH-FeTNPc. The resulting hybrid structure was confirmed and characterized by X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectra. Catalytic activity tests showed that the introduction of MWCNTs resulted in a marked enhanced catalytic activity of FeMATNPc. A series of designed experiments proved that large amounts of hydroxyl radicals accompanied by some peroxy radicals and seldom by high-valent iron intermediates were formed in a MWCNTs-FeTNPc/H2O2 system. In a MWCNTs-CONH-FeTNPc/H2O2 system, much more high-valent iron intermediates with fewer hydroxyl radicals were formed. Conduction electron spin resonance and cyclic voltammetry was used to investigate the intrinsic difference between the two catalysts. More conducting electrons fill MWCNTs and electron transfer between MWCNTs and iron phthalocyanine is faster than that for MWCNTs-CONH-FeTNPc. This special electronic property may influence the formation of active species. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据