4.7 Article

Multi-phenomenal macroscopic investigation of cross-flow membrane flux in microfiltration of oil-in-water emulsion, experimental & computational

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jwpe.2019.100962

关键词

Membrane; Microfiltration; Oil-in-water emulsion; CFD modeling; Pore blocking; Cake layer formation

向作者/读者索取更多资源

The primary reasons for reduction of permeate flux in membrane separation processes are cake layer formation and concentration polarization phenomenon. Although pore blocking affects cross membrane flux, but its influence has been neglected in the previous numerical studies. In present study, macroscopic 2D CFD modeling and experimental survey in treatment of oil-in-water emulsion with cellulose acetate (CA) membrane in a cross-flow microfiltration are presented. In order to investigate the simultaneous effects of both phenomena of cake formation and pore blocking, an oil droplet size distribution based on experimental measurements is considered in the modeling. The pore blocking is simulated macroscopically in the microfiltration process. As a main result, by considering membrane governing equations into a 2D domain, i.e. pore blocking phenomenon, the simulation prediction can improve about 15%. Effects of various operational conditions such as trans-membrane pressure (TMP), cross-flow velocity (CFV) and feed oil concentration on permeate flux and process performance are also evaluated. By increasing feed oil concentration from 1000 to 10000 mg/L, the maximum value of oil concentration on membrane surface increases 9.68 times and by increasing CFV from 0.5 to 1.1 m/s, the maximum thickness of concentration polarization (CP) layer decreases 14%. Comparison of model predictions against experimental data for permeate flux indicates acceptable accuracies with a maximum error of 4.62%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据