4.7 Review

A review on recent developments of thermoelectric materials for room-temperature applications

出版社

ELSEVIER
DOI: 10.1016/j.seta.2019.100604

关键词

Thermoelectric materials; Energy harvesting; Wearable; Power generation

向作者/读者索取更多资源

Wearable thermoelectric generators (TEGs) emerge as a viable renewable energy source, which directly convert the heat dissipated from human skin into electricity. Extensive reviews have been conducted on the efficiency of thermoelectric materials (TE) as the dominant element of TEGs. TE materials are categorised as inorganic, organic, and hybrid. Each of these reviews focused on either a specific type of TE materials, or on a certain specification (i.e. flexibility) of them. However, less attention has been paid to comprehensively review all these types without taking into account a certain specification. Therefore, the purpose of this paper is to summarize the progress and current state-of-the-art research on the three types of TE materials respecting their TE properties and efficiency at 300 K, which is the operating temperature of wearable TEGs. Concerning the inorganic TE materials, the results show that Bi0.4-xSb1.6+xTe3 and Bi2Te2.7Se0.3 are the most optimal TE materials, which exhibit the greatest efficiencies at room temperature. In addition, it is remarkably more efficient to replace polymer based TE composites with carbon based TE composites in the organic and the hybrid types. In total, this comprehensive review paves the way for researchers to find out the most suitable TE materials at room temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据