4.7 Article

High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries

期刊

JOURNAL OF ENERGY STORAGE
卷 27, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2019.101036

关键词

Al-doped LiMn2O4; Cathode material; High electrochemical stability; Li-ion battery

资金

  1. Anhui Natural Science Foundation [1908085ME151]
  2. national level foreign expert introduction plan project [G20190219004]
  3. Anhui foreign 100-person short-term plan

向作者/读者索取更多资源

High electrochemical stability Al-doped LiMn2O4 (LMO) cathode materials for Li-ion batteries were synthesized using a simple combustion method with degreased cotton fiber as the carrier. The precursors of Mn, Li, and Al sources with different stoichiometric ratios were dissolved into alcohol, then a rapid combustion process was conducted to produce the Al-doped LiMn2-xAlxO4 (x = 0.05, 0.10, and 0.16). The morphology and properties of the Al-doped LMOs were characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Results indicated that both the particle size and lattice parameters of the Al-doped LMOs decreased with an increase in the Al doping ratio, as theoretically supported by the ab initio calculation. This phenomenon is conducive to full contact between the electrolyte and cathode materials, and so can shorten the diffusion distance between of Li+ ions in solid phase. Electrochemical characterization showed that Al doping can improve the cycle performance of LMO. A doping content of 16 at.% to LMO showed excellent electrochemical performance, with a first-charge specific capacity of 100.7mAh/g and a capacity retention rate of 93.9% after 400 cycles at a current rate of 0.5 C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据