4.5 Review

Release of coarse woody detritus-related carbon: a synthesis across forest biomes

期刊

CARBON BALANCE AND MANAGEMENT
卷 15, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13021-019-0136-6

关键词

Coarse woody detritus; Decomposition; Forest carbon balance; Forest disturbance consequences; Heterotrophic respiration; Tree mortality effects

资金

  1. United States Department of Agriculture Forest Service [16-JV-11242307]
  2. National Science Foundation Long-term Ecological Studies Program [DEB-1440409]
  3. National Science Foundation OPUS Program [DEB-1353159]
  4. Kaye and Ward Richardson Endowment

向作者/读者索取更多资源

Background Recent increases in forest tree mortality should increase the abundance coarse woody detritus (CWD) and ultimately lead to increased atmospheric carbon dioxide. However, the time course of carbon release from CWD is not well understood. We compiled CWD decomposition rate-constants (i.e., k) to examine how tree species, piece diameter, position (i.e., standing versus downed), canopy openness, and macroclimate influenced k. To illustrate their implications we modeled the effect of species and position on estimates of decomposition-related carbon flux. We examined a subset of currently used models to determine if their structure accounted for these factors. Results Globally k of downed CWD varied at least 244-fold with interspecies variation at individual sites up to 76-fold. While k generally decreased with increasing piece diameter, under open canopies the opposite occurred. Standing CWD sometimes exhibited little decomposition, but sometimes had k values up to 3 times faster than downed CWD. There was a clear response of k to mean annual temperature of approximate to 2.6 times per 10 celcius; however, there was considerable variation for a given mean annual temperature related to species, diameter, and position. A key feature of carbon release from CWD after disturbance was the evolution of the ecosystem-level k value as positions and species mixtures of the remaining CWD changed. Variations in decomposition caused by disturbance (e.g., changes in species, positions, sizes, and microclimate) had the potential to cause net carbon fluxes to the atmosphere to be highly nonlinear. While several models currently being used for carbon accounting and assessing land-use/climate change would potentially capture some of these post disturbance changes in fluxes and carbon balances, many would not. Conclusions While much has been learned in the last 5 decades about CWD decomposition, to fully understand the time course of carbon release from increased mortality and other aspects of global change a new phase of global CWD research that is more systematic, experimental, and replicated needs to be initiated. If our findings are to be fully applied in modeling, an approach acknowledging how the rate of carbon release evolves over time should be implemented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据