4.6 Article

Game-Theoretic Vaccination Against Networked SIS Epidemics and Impacts of Human Decision-Making

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCNS.2019.2897904

关键词

Behavioral decision-making; cyber-physical and human systems; epidemics; game theory; network security; prospect theory

资金

  1. National Science Foundation [CNS-1718637]

向作者/读者索取更多资源

In this paper, we study decentralized protection strategies against susceptible-infected-susceptible epidemics on networks. We consider a population game framework where nodes choose whether or not to vaccinate themselves, and the epidemic risk is defined as the infection probability at the endemic state of the epidemic under a degree-based mean-field approximation. Motivated by studies in behavioral economics showing that humans perceive probabilities and risks in a nonlinear fashion, we specifically examine the impacts of such misperceptions on the Nash equilibrium protection strategies. We first establish the existence and uniqueness of a threshold equilibrium where nodes with degrees larger than a certain threshold vaccinate. When the vaccination cost is sufficiently high, we show that behavioral biases cause fewer players to vaccinate, and vice versa. We quantify this effect for a class of networks with power-law degree distributions by proving tight bounds on the ratio of equilibrium thresholds under behavioral and true perceptions of probabilities. We further characterize the socially optimal vaccination policy and investigate the inefficiency of Nash equilibrium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据