4.8 Article

Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer

期刊

ADDITIVE MANUFACTURING
卷 32, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2019.101001

关键词

Polymer; 3D printing; Material extrusion; Heat transfer; Finite element analysis

向作者/读者索取更多资源

The heating of a polymer in a liquefier of a material extrusion 3D printer is numerically studied. The problem is investigated by solving the mass, momentum, and energy conservation equations. The polymer is taken as a generalized Newtonian fluid with a dynamical viscosity function of shear rate and temperature. The system of equations is solved using a finite element method. The boundary conditions are adapted by comparison with the previous work of Peng et al. [5] showing that the thermal contact between the polymer and the liquefier is very well established. The limiting printing conditions are studied by determining the length over which the polymer temperature is below the glass transition temperature. This provides a simple relation for the inlet velocity as a function of the working parameters and the polymer properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据